资源类型

期刊论文 116

会议视频 3

年份

2023 24

2022 14

2021 11

2020 5

2019 7

2018 9

2017 9

2016 5

2015 4

2014 3

2013 6

2012 2

2011 3

2010 2

2009 2

2008 4

2007 5

展开 ︾

关键词

营养健康 2

CPAL 1

Caco-2细胞 1

China TIMES模型 1

N-糖基化 1

REC114 1

SARS-CoV-2 1

ZNF438 1

不孕症 1

乳杆菌 1

产业融合 1

亮氨酸 1

代谢 1

代谢性疾病 1

代谢特征 1

代谢紊乱 1

价值增值 1

价值提升 1

传播路径 1

展开 ︾

检索范围:

排序: 展示方式:

Low-temperature caproate production, microbial diversity, and metabolic pathway in xylose anaerobic fermentation

《环境科学与工程前沿(英文)》 2023年 第17卷 第3期 doi: 10.1007/s11783-023-1637-9

摘要:

● Converting xylose to caproate under a low temperature of 20 °C by MCF was verified.

关键词: Xylose fermentation     Caproate     Low temperature     Bifidobacterium     FAB pathway     RBO pathway    

denitrification system with short-term pyridine exposure: Process capability, inhibition kinetics and metabolic

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1433-3

摘要:

• Short-term effect of the pyridine exposure on the SAD process was investigated.

关键词: Anammox     Inhibition     Metabolic pathway     Microbial community     Pyridine     SAD    

biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic

Zuotao Zhang, Chongyang Wang, Jianzhong He, Hui Wang

《环境科学与工程前沿(英文)》 2019年 第13卷 第5期 doi: 10.1007/s11783-019-1164-x

摘要: Anaerobic phenanthrene biodegradation enriched process was described in detail. The enriched bacterial communities were characterized under four redox conditions. The enriched archaeal communities were stated under high percentage conditions. Relatively intact pathways of anaerobic phenanthrene biodegradation were proposed. Polycyclic aromatic hydrocarbons (PAHs) are widespread and persistent contaminants worldwide, especially in environments devoid of molecular oxygen. For lack of molecular oxygen, researchers enhanced anaerobic zones PAHs biodegradation by adding sulfate, bicarbonate, nitrate, and iron. However, microbial community reports of them were limited, and information of metabolites was poor except two-ring PAH, naphthalene. Here, we reported on four phenanthrene-degrading enrichment cultures with sulfate, bicarbonate, nitrate, and iron as electron acceptors from the same initial inoculum. The high-to-low order of the anaerobic phenanthrene biodegradation rate was the nitrate-reducing conditions>sulfate-reducing conditions>methanogenic conditions>iron-reducing conditions. The dominant bacteria populations were Desulfobacteraceae, Anaerolinaceae, and Thermodesulfobiaceae under sulfate-reducing conditions; Moraxellaceae, Clostridiaceae, and Comamonadaceae under methanogenic conditions; Rhodobacteraceae, Planococcaceae, and Xanthomonadaceae under nitrate-reducing conditions; and Geobacteraceae, Carnobacteriaceae, and Anaerolinaceae under iron-reducing conditions, respectively. Principal component analysis (PCA) indicated that bacteria populations of longtime enriched cultures with four electron acceptors all obtained significant changes from original inoculum, and bacterial communities were similar under nitrate-reducing and iron-reducing conditions. Archaea accounted for a high percentage under iron-reducing and methanogenic conditions, and Methanosarcinaceae and Methanobacteriaceae, as well as Methanobacteriaceae, were the dominant archaea populations under iron-reducing and methanogenic conditions. The key steps of phenanthrene biodegradation under four reducing conditions were carboxylation, further ring system reduction, and ring cleavage.

关键词: Phenanthrene     Anaerobic biodegradation     Bacterial populations     Archaea populations     Metabolic pathway    

Metabolomics in human type 2 diabetes research

null

《医学前沿(英文)》 2013年 第7卷 第1期   页码 4-13 doi: 10.1007/s11684-013-0248-4

摘要:

The high prevalence of diabetes and diabetic complications has caused a huge burden on the modern society. Although scientific advances have led to effective strategies for preventing and treating diabetes over the past several decades, little progress has been made toward curing the disease or even getting it under control, from a public health and overall societal standpoint. There is still a lack of reliable biomarkers indicative of metabolic alterations associated with diabetes and different drug responses, highlighting the need for the development of early diagnostic and prognostic markers for diabetes and diabetic complications. The emergence of metabolomics has allowed researchers to systemically measure the small molecule metabolites, which are sensitive to the changes of both environmental and genetic factors and therefore, could be regarded as the link between genotypes and phenotypes. During the last decade, the progression made in metabolomics has provided insightful information on disease development and disease onset prediction. Recent studies using metabolomics approach coupled with statistical tools to predict incident diabetes revealed a number of metabolites that are significantly altered, including branched-chain and aromatic amino acids, such as isoleucine, leucine, valine, tyrosine and phenylalanine, as diagnostic or highly-significant predictors of future diabetes. This review summarizes the current findings of metabolomic studies in human investigations with the most common form of diabetes, type 2 diabetes.

关键词: metabolomics     type 2 diabetes     metabolic pathway     mass spectrometry     nuclear magnetic resonance (NMR)    

New insights into different surfactants’ impacts on sludge fermentation: Focusing on the particular metabolic

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1527-6

摘要:

• The promoting effects for VFA generation follow the order of APG>SDBS>HTAB.

关键词: Waste activated sludge (WAS)     Volatile fatty acids (VFA)     Surfactant types     Functional microorganisms     Metabolic activity upregulation    

Metabolic hypertension: concept and practice

null

《医学前沿(英文)》 2013年 第7卷 第2期   页码 201-206 doi: 10.1007/s11684-013-0264-4

摘要:

Hypertension is a serious public health problem worldwide. More than 60% of the risk factors for hypertension are associated with metabolic disturbances. Metabolic abnormalities increase the risk for hypertension and cause high blood pressure. Improving metabolic disturbances is beneficial for hypertension treatment. Due to the importance of metabolic abnormalities in the pathogenesis of hypertension, we propose a concept of metabolic hypertension. In this review, we discuss and review the clinical types, pathogenesis, risk evaluation and management of metabolic hypertension. Elucidation of the mechanism of metabolic hypertension should facilitate the design of novel pharmacotherapeutics and dedicated antihypertensive manipulations.

关键词: hypertension     cardiometabolic risk factors     metabolic abnormalities    

Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes

null

《医学前沿(英文)》 2015年 第9卷 第2期   页码 139-145 doi: 10.1007/s11684-015-0377-z

摘要:

In obesity, chronic inflammation is believed to induce insulin resistance and impairs adipose tissue function. Although this view is supported by a large body of literature, it has been challenged by growing evidence that pro-inflammatory cytokines may favor insulin sensitivity through induction of energy expenditure. In this review article, interleukin 15 (IL-15) is used as a new example to explain the beneficial effects of the pro-inflammatory cytokines. IL-15 is secreted by multiple types of cells including macrophages, neutrophils and skeletal muscle cells. IL-15 expression is induced in immune cells by endotoxin and in muscle cells by physical exercise. Its transcription is induced by transcription factor NF-κB. IL-15 binds to its receptor that contains three different subunits (α, β and γ) to activate JAK/STAT, PI3K/Akt, IKK/NF-κB and JNK/AP1 pathways in cells. In the regulation of metabolism, IL-15 reduces weight gain without inhibiting food intake in rodents. IL-15 suppresses lipogenesis, stimulates brown fat function, improves insulin sensitivity through weight loss and energy expenditure. In human, circulating IL-15 is negatively associated with body weight. In the immune system, IL-15 stimulates proliferation and differentiation of T cells, NK cells, monocytes and neutrophils. In the anti-obesity effects of IL-15, T cells and NK cells are not required, but leptin receptor is required. In summary, evidence from human and rodents supports that the pro-inflammatory cytokine IL-15 may enhance energy expenditure to protect the body from obesity and type 2 diabetes. The mechanism of IL-15 action remains to be fully uncovered in the regulation of energy expenditure.

关键词: inflammation     obesity     cytokine     energy expenditure     insulin resistance    

electron transfer and its application in dictating routes of biochemical processes associated with metabolic

《医学前沿(英文)》 2021年 第15卷 第5期   页码 679-692 doi: 10.1007/s11684-021-0866-1

摘要: Metabolic reprogramming, such as abnormal utilization of glucose, addiction to glutamine, and increased de-novo lipid synthesis, extensively occurs in proliferating cancer cells, but the underneath rationale has remained to be elucidated. Based on the concept of the degree of reduction of a compound, we have recently proposed a calculation termed as potential of electron transfer (PET), which is used to characterize the degree of electron redistribution coupled with metabolic transformations. When this calculation is combined with the assumed model of electron balance in a cellular context, the enforced selective reprogramming could be predicted by examining the net changes of the PET values associated with the biochemical pathways in anaerobic metabolism. Some interesting properties of PET in cancer cells were also discussed, and the model was extended to uncover the chemical nature underlying aerobic glycolysis that essentially results from energy requirement and electron balance. Enabling electron transfer could drive metabolic reprogramming in cancer metabolism. Therefore, the concept and model established on electron transfer could guide the treatment strategies of tumors and future studies on cellular metabolism.

关键词: metabolic reprogramming     potential of electron transfer     cell proliferation     aerobic glycolysis     cancer metabolism    

Fibroblast growth factor 21: a novel metabolic regulator from pharmacology to physiology

null

《医学前沿(英文)》 2013年 第7卷 第1期   页码 25-30 doi: 10.1007/s11684-013-0244-8

摘要:

Fibroblast growth factor 21 (FGF21) is a member of the fibroblast growth factor family. It actually functions as endocrine hormones but does not regulate cell growth and differentiation. It is demonstrated that FGF21 acts on multiple tissue to coordinate carbohydrate and lipid metabolism, including enhancing insulin sensitivity, decreasing triglyceride concentrations, causing weight loss, ameliorating obesity-associated hyperglycemia and hyperlipidemia. Moreover, FGF21 also plays important roles in some physiological processes, such as fasting and feeding, growth hormone axis and thermogenic function of brown adipose tissue. Clinical relevance of FGF21 in humans is still unclear, and the basis and consequences of increased FGF21 in metabolic disease remain to be determined. Both the pharmacological actions and physiological roles make FGF21 attractive drug candidates for treating metabolic disease, but some questions remain to be answered. This article concentrates on recent advances in our understanding of FGF21.

关键词: FGF21     metabolism     pharmacology     physiology     clinical relevance    

FERM domain-containing protein FRMD6 activates the mTOR signaling pathway and promotes lung cancer progression

《医学前沿(英文)》 2023年 第17卷 第4期   页码 714-728 doi: 10.1007/s11684-022-0959-5

摘要: FRMD6, a member of the 4.1 ezrin–radixin–moesin domain-containing protein family, has been reported to inhibit tumor progression in multiple cancers. Here, we demonstrate the involvement of FRMD6 in lung cancer progression. We find that FRMD6 is overexpressed in lung cancer tissues relative to in normal lung tissues. In addition, the enhanced expression of FRMD6 is associated with poor outcomes in patients with lung squamous cell carcinoma (n = 75, P = 0.0054) and lung adenocarcinoma (n = 94, P = 0.0330). Cell migration and proliferation in vitro and tumor formation in vivo are promoted by FRMD6 but are suppressed by the depletion of FRMD6. Mechanistically, FRMD6 interacts and colocalizes with mTOR and S6K, which are the key molecules of the mTOR signaling pathway. FRMD6 markedly enhances the interaction between mTOR and S6K, subsequently increasing the levels of endogenous pS6K and downstream pS6 in lung cancer cells. Furthermore, knocking out FRMD6 inhibits the activation of the mTOR signaling pathway in Frmd6−/− gene KO MEFs and mice. Altogether, our results show that FRMD6 contributes to lung cancer progression by activating the mTOR signaling pathway.

关键词: FRMD6     lung cancer     mTOR pathway    

Exploring the methodology and application of clinical pathway in evidence-based Chinese medicine

Sicheng Wang, He Yu, Jianping Liu, Baoyan Liu

《医学前沿(英文)》 2011年 第5卷 第2期   页码 157-162 doi: 10.1007/s11684-011-0128-8

摘要: At present, clinical pathway has become one of the most important health care reform measures in many countries. In this study, the authors introduced basic concepts and explored the application of the clinical pathway of evidence-based Chinese medicine incorporated with the methodology from the concepts of management, evidence-based medicine, operational research and health economics. Such concepts provide examples and experiences, on which the application of clinical pathway in Chinese medicine practice in China can be based.

关键词: evidence-based medicine     clinical pathway     methodology     concept     technical difficulty    

Metformin and metabolic diseases: a focus on hepatic aspects

null

《医学前沿(英文)》 2015年 第9卷 第2期   页码 173-186 doi: 10.1007/s11684-015-0384-0

摘要:

Metformin has been widely used as a first-line anti-diabetic medicine for the treatment of type 2 diabetes (T2D). As a drug that primarily targets the liver, metformin suppresses hepatic glucose production (HGP), serving as the main mechanism by which metformin improves hyperglycemia of T2D. Biochemically, metformin suppresses gluconeogenesis and stimulates glycolysis. Metformin also inhibits glycogenolysis, which is a pathway that critically contributes to elevated HGP. While generating beneficial effects on hyperglycemia, metformin also improves insulin resistance and corrects dyslipidemia in patients with T2D. These beneficial effects of metformin implicate a role for metformin in managing non-alcoholic fatty liver disease. As supported by the results from both human and animal studies, metformin improves hepatic steatosis and suppresses liver inflammation. Mechanistically, the beneficial effects of metformin on hepatic aspects are mediated through both adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways. In addition, metformin is generally safe and may also benefit patients with other chronic liver diseases.

关键词: metformin     diabetes     hepatic steatosis     inflammatory response     insulin resistance    

Endogenous tissue factor pathway inhibitor in vascular smooth muscle cells inhibits arterial thrombosis

null

《医学前沿(英文)》 2017年 第11卷 第3期   页码 403-409 doi: 10.1007/s11684-017-0522-y

摘要:

Tissue factor pathway inhibitor (TFPI) is the main inhibitor of tissue factor-mediated coagulation. TFPI is expressed by endothelial and smooth muscle cells in the vasculature. Endothelium-derived TFPI has been reported to play a regulatory role in arterial thrombosis. However, the role of endogenous TFPI in vascular smooth muscle cells (VSMCs) in thrombosis and vascular disease development has yet to be elucidated. In this TFPIFlox mice crossbred with Sma–Cre mice were utilized to establish TFPI conditional knockout mice and to examine the effects of VSMC-directed TFPI deletion on development, hemostasis, and thrombosis. The mice with deleted TFPI in VSMCs (TFPISma) reproduced viable offspring. Plasma TFPI concentration was reduced 7.2% in the TFPISma mice compared with TFPIFlox littermate controls. Plasma TFPI concentration was also detected in the TFPITie2 (mice deleted TFPI in endothelial cells and cells of hematopoietic origin) mice. Plasma TFPI concentration of the TFPITie2 mice was 80.4% lower (P<0.001) than that of the TFPIFlox mice. No difference in hemostatic measures (PT, APTT, and tail bleeding) was observed between TFPISma and TFPIFlox mice. However, TFPISma mice had increased ferric chloride–induced arterial thrombosis compared with TFPIFlox littermate controls. Taken together, these data indicated that endogenous TFPI from VSMCs inhibited ferric chloride–induced arterial thrombosis without causing hemostatic effects.

关键词: arterial thrombosis     conditional knockout mice     tissue factor pathway inhibitor     vascular smooth muscle cells    

Water-dispersible nano-pollutions reshape microbial metabolism in type-specific manners: A metabolic

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1548-1

摘要:

• Water-dispersible nano-pollutions exhibit type-specific toxic effects on E. coli.

关键词: Nano-toxicity     Nano-plastics     Quantum dots     Microbial metabolite     Metabolic dysregulation    

The FGF metabolic axis

Xiaokun Li

《医学前沿(英文)》 2019年 第13卷 第5期   页码 511-530 doi: 10.1007/s11684-019-0711-y

摘要: Members of the fibroblast growth factor (FGF) family play pleiotropic roles in cellular and metabolic homeostasis. During evolution, the ancestor FGF expands into multiple members by acquiring divergent structural elements that enable functional divergence and specification. Heparan sulfate-binding FGFs, which play critical roles in embryonic development and adult tissue remodeling homeostasis, adapt to an autocrine/paracrine mode of action to promote cell proliferation and population growth. By contrast, FGF19, 21, and 23 coevolve through losing binding affinity for extracellular matrix heparan sulfate while acquiring affinity for transmembrane α-Klotho (KL) or β-KL as a coreceptor, thereby adapting to an endocrine mode of action to drive interorgan crosstalk that regulates a broad spectrum of metabolic homeostasis. FGF19 metabolic axis from the ileum to liver negatively controls diurnal bile acid biosynthesis. FGF21 metabolic axes play multifaceted roles in controlling the homeostasis of lipid, glucose, and energy metabolism. FGF23 axes from the bone to kidney and parathyroid regulate metabolic homeostasis of phosphate, calcium, vitamin D, and parathyroid hormone that are important for bone health and systemic mineral balance. The significant divergence in structural elements and multiple functional specifications of FGF19, 21, and 23 in cellular and organismal metabolism instead of cell proliferation and growth sufficiently necessitate a new unified and specific term for these three endocrine FGFs. Thus, the term “FGF Metabolic Axis,” which distinguishes the unique pathways and functions of endocrine FGFs from other autocrine/paracrine mitogenic FGFs, is coined.

关键词: FGF19     FGF21     FGF23     FGFR     metabolism     endocrine     Klotho    

标题 作者 时间 类型 操作

Low-temperature caproate production, microbial diversity, and metabolic pathway in xylose anaerobic fermentation

期刊论文

denitrification system with short-term pyridine exposure: Process capability, inhibition kinetics and metabolic

期刊论文

biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic

Zuotao Zhang, Chongyang Wang, Jianzhong He, Hui Wang

期刊论文

Metabolomics in human type 2 diabetes research

null

期刊论文

New insights into different surfactants’ impacts on sludge fermentation: Focusing on the particular metabolic

期刊论文

Metabolic hypertension: concept and practice

null

期刊论文

Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes

null

期刊论文

electron transfer and its application in dictating routes of biochemical processes associated with metabolic

期刊论文

Fibroblast growth factor 21: a novel metabolic regulator from pharmacology to physiology

null

期刊论文

FERM domain-containing protein FRMD6 activates the mTOR signaling pathway and promotes lung cancer progression

期刊论文

Exploring the methodology and application of clinical pathway in evidence-based Chinese medicine

Sicheng Wang, He Yu, Jianping Liu, Baoyan Liu

期刊论文

Metformin and metabolic diseases: a focus on hepatic aspects

null

期刊论文

Endogenous tissue factor pathway inhibitor in vascular smooth muscle cells inhibits arterial thrombosis

null

期刊论文

Water-dispersible nano-pollutions reshape microbial metabolism in type-specific manners: A metabolic

期刊论文

The FGF metabolic axis

Xiaokun Li

期刊论文